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Abstract 

We find conditions on the Gauss map and the Gauss curvature to describe a surface S in R 3. Given 
the curvature of S (e.g. as a function of the asymptotic coordinates) these conditions are equivalent 
to the reduced ~7-model equations. We interpret the Kerr solution of the Ernst equation as a surface 
in R 3. 
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1. Introduction 

In this paper we study two-dimensional immersed submanifolds (surfaces) S of  the flat 

space R 3 with the Euclidean or Minkowskian metric. The first fundamental form of S is 

given by 

g t = g i j d x i d x  j ,  g i j = d i a g ( 1 , 1 , E ) ,  E = + I ,  (1) 

where X i (i = 1,2, 3) are functions of  coordinates on S (pullbacks of  the Cartesian coordi- 

nates of  R 3 under the immersion). We are especially interested in surfaces with a prescribed 

Gauss (Ricci scalar) curvature. We assume that the curvature is given in terms of  coordi- 

nates, which fix the second fundamental form gu of  S up to a conformal factor (see (3) and 
(13)). Such surfaces were already investigated by Bianchi [4]. Recently, they were studied 

by Levi and Sym [13] (see also [5,9,10]), who considered equations describing hyperbolic 
surfaces in the three-dimensional Euclidean space (E = 1 in (1)) from the point of  view of  
their complete integrability. This paper is an extended version of  the unpublished work of  

the author [15]. 
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Levi and Sym [13] use the following parametrization of the first and the second funda- 
mental forms of S: 

gl = p2(a2 d x2 + 2abcos9  dx dt + b 2 dt 2) , 

glI = 2pab sin 9 dx dt. 

(2) 

(3) 

The functions x and t are called the asymptotic coordinates of S and K = -/9 -2 is the 
Gauss curvature of S. Conditions for the functions a, b, ~o, p of x and t to define a surface 
are given by the Gauss-Codazzi equations [7] 

) ( a p ,  t )  bp, x sin~o + \ 2 b p  sin~0 - absin~o = 0 ,  (4) ~O, xt + \ 2ap ,x ,t 

2pa. t + ap, t - bp, x cos tp = 0 ,  (5) 

2pb x + bp, x - ap, t cos tp = 0 .  (6) 

It was assumed in [13] that the function p(x, t) is given. In this case Eqs. (4)-(6) yield three 
equations for three unknown functions a, b, ~o. Levi and Sym raised the question when this 

system is completely integrable. They showed that Eqs. (4)-(6) coincide with integrability 
conditions of the following linear system of equations (the Gauss-Weingarten equations) 
for a wave function ~p: 

lp, x = [liaa3 + i (l~o,x + l(ap, t/bp)sin~o)~r2] ~p , (7) 

~,t = (-½ibcostpo3 - ¼i(bp, x/ap)sintptr 2 + ½ib sin~oal) ~:, (8) 

where lp(x, t) is a 2 x 2 invertible matrix and cri are the Pauli matrices. In general, one 
cannot introduce a spectral parameter ), into Eqs. (7) and (8). This is possible when 

p(x, t )  = pl(X) + p2(t) .  (9) 

A resulting spectral problem admits the Zakharov-Shabat dressing method (called the 
Darboux transformation in [13]). Thus, it is justified to call Eqs. (4)-(6) completely in- 
tegrable when p is given by (9).  

In this paper, we present another description of surfaces in R 3. We concentrate on prop- 
erties of the normal (Gauss) mapping. We find conditions on the normal unit vector field 
and the Gauss curvature to describe a surface in R 3 (Section 2). For E = 1 and an indefinite 
second fundamental form gII they are equivalent to Eqs. (4)-(6). Given the Gauss curvature 
(in terms of coordinates normalizing gn) our equations coincide with a two-dimensional 
symmetry reduction of the three-dimensional a-model equations. Assumption (9) leads to 
known completely integrable models. In particular, if the functions Pl and P2 are both non- 
constant, one obtains the Ernst equation (or its Euclidean analogue) describing stationary 
axisymmetric gravitational fields in the Einstein theory. In Section 3 we construct a surface 
in R 3 corresponding to the Kerr solution, which plays a crucial role in the theory of black 
holes. 
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We use the index notation of  general relativity. Repeated indices are summed over their 

range. The matrix gi j  is the inverse of  gij. Indices are raised and lowered by means of  

gij and gi j ,  1)i = gijl)j, 1)i = gij  vJ.  The relativistic square of  a vector (or covector) v is 

defined by v 2 = v i vi. Given a metric tensor one can define the Levi-Civita completely 

antisymmetric pseudotensor. In the case of  R 3 and the Cartesian coordinates we denote it 

by (:ijk. All functions are assumed to be at least twice continuously differentiable. 

2. Conditions on the normal mapping 

The main results of  this paper are given by the following propositions. 

Proposi t ion 1. Let S be an immersed surface in the flat space R 3. Assume that the first and 
the second fundamental forms gI, glI of  S are nondegenerate at each point. Then 

dx  i ~- p~ i j k  nj  * dn  k , (10) 

where n i is the unit vector field normal to S, n2 = 4-1, the star denotes the Hodge dualization 
with respect to glI and IPl = IKI - ! /2 ,  K being the Gauss curvature of  S. 

Proof. Since gl is nondegenerate the normal vector n is not null and we can assume n 2 = 

:t= 1. The first and the second fundamental forms of  S are given by 

gl = dx i dxi (11) 

and 

gII = dxi dni • (12) 

If  gu is nondegenerate one can introduce local coordinates ~a, a = 1,2, on S such that 

gIt = f ( d ~ l d ~  1 +E 'd /~2d~2) ,  f ~ 0 ,  E ' =  4-1. (13) 

It follows from (12) and (13) that 

xi lni ,2  +xi2ni ,  1 = O, (14) 

f = x  i , lni,  1 --'~ EPx'2ni 2 ,  (15) 

where X,a(n,a) denotes the derivative of  x(n)  with respect to ~a. Moreover, since n is 

orthogonal to S, 

Xian i = 0 (16) 

and 

- -X i l , 2n i  = xilni,2, = xi2ni, 1 • (17) 

Eqs. (14) and (17) yield 

x ' l n i  2 = x i2n i ,  1 = 0 .  (18) 
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Vectors n, n 1, n 2 have to be independent since n I ani : 0 and a proportionality of  n 1 
and n. 2 would imply f = 0 = gIr in virtue of  (15) and (18). This fact is equivalent to the 
condition 

Eijkninj, Ink, 2 ~ 0 .  (19) 

Due to (19) Eqs. (16) and (18) yield 

xl 1 = --p~ijk nj nk, 2 , (20) 

xi2 = P'~Uknjnk, 1 , (21) 

where p, p '  are functions of  ~a. It follows from (15) that 

p '  = E'p . (22) 

Eq. (10) is a direct consequence of  (20)-(22) since *d//I = d~2, ,d~2 = - E '  d~ 1 for the 

metric (13) (independently of  f ) .  Substituting (20)-(22) into (11) and (12) yields 

gl = En2p2(ni, zn 12 d~ 1 d~ 1 - 2~'ni, in{ 2 d~l d~2 q- hi, i n l l  d~ 2 dr2),  (23) 

gll = p~ijkninj, Ink, 2(d~ 1 d~ 1 + ~' d~ 2 d~ 2) • (24) 

The Gauss curvature of  S is equal to the Ricci scalar curvature. It can be defined as K = 
detgii/detgi [7]. It follows from (23) and (24) that 

K = ¢E'n2p -2 . (25) 

Note that ~Etn 2 = 4-1 and that Eq.(10) does not depend on the choice of  coordinates 

on S. [] 

Proposi t ion 2. Let S be a two-dimensional differential manifold with metric g' given up to 
a conformalfactor. Let functions p, ni on S satisfy the following equation 

~ijknj d(p*dnk)  = 0 (26) 

together with the conditions 

giJnin j = 4-1,  (27) 

pE ijk dnj *dnk ~ O, (28) 

where gij is given by (1) and the Hodge star corresponds to g'. Then, locally, S can be 
considered as a submanifold of R 3 such that n is the normal vectorfield, the Gauss curvature 
of S is given by (25) and the second fundamental form of S is proportional to g'. 

Proof. Eq. (26) implies (locally) the existence of  functions x i on S such that (10) is satisfied. 
These functions define a local embedding (an immersion i f x  i exists globally) of  S into R 3. 
Let ~a, a = 1,2, be coordinates of  S such that 

g '  "- (d/f1 d~ l + E ' d ~ 2 d ~ 2 ) ,  E' = 4-1.  (29) 
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In these coordinates (10) is equivalent to Eqs. (20)-(22). Substituting these equations into 
the definitions (11), (12) yields expressions (23) and (24) for the fundamental forms. Con- 

dition (28) implies (19) and p # 0, hence gI and gu are nondegenerate. It follows from 
(23), (24), (29) that glI " "  g' and the Gauss curvature is given by (25). [] 

Remark 1. In the following we will assume that Eq. (26) is always accompanied by con- 
ditions (27) and (28). 

Eq. (26) becomes an equation for the Gauss map if p (or the Gauss curvature) is given 
as a function of coordinates on S. For p = 1, Eq. (26) describes a harmonic map from S 
with the metric g' (or gll) into the two-dimensional sphere or pseudosphere. This equation 
is often called the a-model equation. For p # const., Eq. (26) can be also considered as 
a harmonic map equation provided the domain of n is extended trivially to the manifold 

= R x S with the metric 

~ = a g ' + p 2 ( d d p + o g )  2, a ,4 ,=to ,  e = 0 .  (30) 

Here tp is a coordinate of R, a is a nonvanishing function on S and to is a l-form on S. Metric 
(30) is preserved by translations in ¢. And conversely, if a three-dimensional metric admits 
a Killing vector it can be transformed into the form (30). Thus, in general, Eq. (26) coincides 
with a reduction of a three-dimensional a-model equation by means of a symmetry. The 
function p is equal to the length of the Killing vector. 

For E = - ~ '  = 1, Eq. (26) and Eqs. (4)-(6) describe the same geometrical situation. 
Hence they must be equivalent (see also [9] for a proof of this fac0. The function p is the 
same in both approaches, but the variables a, b, ~o are related to the components of n by a 
nonpoint transformation. A transformation between coordinates x, t and 5 a is given by 

X = 51 + 52, t = 51 -- 52. (31) 

Comparing expressions (2) and (23) for gI yields functions a, b, ~0 in terms of n i, 

a = (nlxni, x) 1/2, b = (nltni, t) i/2, abcos ~o = -n lxn i ,  t .  (32) 

It follows from Proposition 2 that so defined functions a, b, ~o correspond to some surface in 
R 3 if p and n satisfy Eq. (26). Hence the Gauss--Codazzi Eqs. (4)--(6) must be necessarily 
satisfied (this fact was confirmed by Levi [12] with the use of a symbolic computation 
package). In order to pass from a, b, ~0 to n one can use Eqs. (7) and (8). Let gt be a solution 
of these equations taking values in SU(2): 

¢ t  = O- l .  (33) 

(Note that condition (33) is preserved by Eqs. (7) and (8), hence it is sufficient to impose it 
only at a point.) A direct calculation shows, in virtue of (4)--(8), that 

(p J - I  Jr) ,  x + ( p J - I  J x),t = 0 ,  (34) 
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where J = ~"Z-]-~-ltr21P (hence J ~ SU(2) and Tr J = 0). Eq. (34) is equivalent to (26) 
modulo transformation (31) and the identification 

~ - l o r 2 ~ / /  = n i ~ i  . (35) 

It follows that functions n i given by (35) define a surface S in R 3 with the curvature p. One 

can recover the original functions a, b, tp by means of (32). Hence, the surface S coincides 
with that related to a, b, ~o in the approach of Levi and Sym. (More precisely, a, b, ¢p define 

a surface up to  a rigid motion [13]. This fact agrees with the ambiguity in the choice of 

that gives rise to n.) 

Remark 2. Given a surface S (hence the functions x i, n i , /9 )  there is a dual surface S'  for 
which the roles of x i and n i interchange in the following sense 

n i x i 
x li , t l  ti = 

- x k n k  ~ , p p ' =  (nin'i)  - l  . (36) 

It can be verified by a direct calculation that the primed variables satisfy Eq. (10) if the 

unprimed variables do. Transformation (36) does not preserve the property (39) (see Sec- 
tion 3). One can obtain an infinite series of surfaces by applying (36) alternatively with 
translations of x by a constant vector. 

Remark  3. The Gauss curvature K of S is well defined if gI is not degenerate. In this case 
the metric gII is nondegenerate iff K ~ 0. When K = 0 everywhere then there are local 

coordinates y, z on S such that gI1 ~" dz 2. Following the proof of Proposition 1 one can 
easily show that then S is either a plane or it is given locally by 

x i = y t i j k n j ( z ) n k ,  z + a i ( z ) ,  n 2 = 4 - 1 ,  n i a i z  = 0 ,  (37) 

where ni ,  a i depend only on z. A surface defined by (37) is formed by straight lines em- 

anating in a peculiar way from the curve x i = a i (z) .  If  a surface S is everywhere null, 
n 2 -- 0, then there is no notion of the Gauss curvature. In this case gI "" gIl ~ dz 2 in some 
coordinates y, z. The surface is given locally by 

X i : y n  i ( Z )  Jr  a i (Z) ,  n 2 = n i a , i z  = 0. (38) 

It follows from (38) that S is formed by null straight lines emanating orthogonally from a 
non-timelike curve in a three-dimensional Minkowski space. 

3. Surface related to the Kerr metric 

Eq. (26) has special properties when p is a harmonic function on S with respect to the 
metric g '  (or gn) 

d*dp = 0. (39) 
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Then either 

p = const. 

or one can adapt the coordinates ~a (see (13)) to obtain 

p = ~ l  

or 

387 

(40) 

(41) 

p = ~1 + ~ 2  (ifE' = - -1) .  (42) 

Pohlmeyer [ 14] showed that for p = const., Eq. (26) is equivalent to the sine-Gordon 
equation (the latter equation follows immediately from (4)). Hence it is clear that in this 
case Eq. (26) is completely integrable. A direct proof of this property and a construction 
of solutions via the dressing method of Zakharov and Shabat was given by Zakharov and 
Mikhailov [ 18]. Belinski and Zakharov [ 1,2] applied successfully a similar method when 
p # const, and (39) is satisfied. In the case of (41), Eq. (26) is equivalent to the Ernst 
equation (or its analogue) of general relativity. The Ernst equation admits also other solution 
generating methods, which were found in late seventies (see e.g. [ 11 ]). Concluding, Eq. (26) 
is completely integrable whenever p satisfies (39). This fact agrees with the results of Levi 
and Sym [13] on Eqs. (4)-(6). It also agrees with the observation that Eq. (26), with p given 
by any of the formulas (40)-(42), can be considered as a symmetry reduction of the self- 
dual Yang-Mills equations (SDYM) (see e.g. [ 16,17]), which are completely integrable. In 
all these cases a corresponding spectral problem can be obtained from that for the SDYM 
equations [ 16]. 

The Ernst equation follows from the Einstein equations under the assumption that a 
metric tensor solving the Einstein equations is stationary and axially symmetric and the two 
symmetries commute. It is equivalent to Eq. (26) provided 

= - -~ '  = n 2 = --1 (43) 

and p ¢ const, satisfies (39). Hence, n corresponds to a spacelike surface in the three- 
dimensional Minkowski space. Under these assumptions gn "~ g', where 

gt = (doE + dz 2) (44) 

and p, z are coordinates of S (see (13) and (41), z = ~2). By means of the stereographic 
projection the vector n can be parametrized in the following way: 

2~ ~ +  1 
n2 + in1 = (~ _ 1 '  n 3  = ( ~  _ 1 ' ( 4 5 )  

where ( is a complex variable. In terms of ( Eq. (26) reads 

( ( (  - l) d(p*d¢) = 2p( d( A *d( ,  (46) 

where the Hodge dual is taken with respect to g'. Substituting ¢ = (1 - E)/(1 + E) in (46) 
yields the Ernst equation 

R e E d ( p ' d E )  = p d E  A *dE. (47) 
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Condition (28) is equivalent to 

d E  A d/~ # 0 .  (48) 

It excludes solutions of  the Ernst equation belonging to the Weyl class (E = /~ in this 
class). Eq. (47) admits the point symmetry group SL(2, R), which corresponds to the Lorentz 

invariance of  Eq. (26). 
One of  the most important solutions of  the Ernst equation is that related to the Kerr 

metric [ 11,8], which represents a gravitational field of  a rotating black hole. To describe 

this it is convenient to use the so-called prolate spheroidal coordinates w, y, where w > 1, 
lyl < 1 in the region outside the horizon and the axis of  rotation. In these coordinates 

p = t r ~ / ( w  2 - 1 ) ( 1 - y 2 ) ,  ( = ( p w - i q y )  - 1 ,  p 2 + q 2 =  1, p q # O , ( 4 9 )  

( dt°2 dy 2 '~ 
glI " \ W  2 -- 1 + 1 - - - ' - ~  ] ' (50) 

where ~,  p,  q are constants. From (49) and (45) one obtains 

n = h (2qy ,  2 p w ,  1 + p2w2  + q2y2) ,  (51) 

where 

h = (1 - p2w2 - q2y2) - l .  (52) 

Integrating (10) yields 

x = - t r h ( 2 p y ( w  2 - 1), 2qw(1 - y2), ( p / q )  (w 2 _ 1) + ( q / p )  (1 - y2)) (53) 

modulo addition of  a constant vector. Eq. (53) defines parametrically a part of  a surface 
in R 3 given by the equation 

(xl)2 + (X2)2 X 3 b ,  (54) 
x 3 + c x 3 -- c 

where c = t r / p q ,  b = tr ( ( q / p )  - ( p / q ) )  (c can be normalized to value 1 by a scaling 
of  xi ) .  The  surface S is spacelike everywhere except four straight lines given by x I = 
+ p ( x  3 - c), x 2 = 4-q(x  3 + c), where the normal vector becomes null (n 2 = 0). Also the 

parametrization (53) (with relaxed constraints on values of  w and y) is valid apart these 
lines. Intersections of  S with planes x 3 = const, are ellipses for Ix31 > Icl, hyperbolas 

when Ix31 < Icl and they contract to an interval when x 3 = +c.  For Ix31 ~ t o  the surface 
tends to a light cone, which corresponds to the ergosphere in the Kerr space-time. The 

fundamental forms of  S read as follows in the coordinates w, y: 

gI = --4tr2h2[q2(1 - y2)2(dto)2 + p2(w2 - 1)2(dy)2], (55) 

gn = 4c- l t r2h2[(1 - YE)(dto)2 + (w E - 1)(dY) 2] • (56) 

The form gn is definite ( , '  = 1) in some domains of  S and it is indefinite (E' = - 1 )  in 
others. Since both fundamental forms are diagonal in the coordinates w, y it follows that 
is an isothermic surface [3,6]. 
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An Euclidean analogue (~ = 1) of  the surface (54) follows when x I , x 2 are replaced by 

purely imaginary variables. For c = 1 one obtains 

( x l )  2 (X2) 2 __ X 3 
X3 _]_--------~ q- ~ = b . (57)  

For b > x 3 > 1 the surface given by (57) is bounded. It can be completed to a closed set 

by attaching an interval connecting the points x+ = (+~/ (b  - 1) /2 ,0 ,  1). S is smooth 
everywhere except the points x±, in which n has no limit. Intersections of  S with planes 
x 3 = const, are ellipses, which contract to a point when x 3 ---> b and to the interval when 
x 3 ~ 1. The second fundamental form of S is degenerate on the interval. 
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